Section 7.2 (page 465)

1. $\pi \int_{0}^{1}(-x+1)^{2} d x=\frac{\pi}{3} \quad$ 3. $\pi \int_{1}^{4}(\sqrt{x})^{2} d x=\frac{15 \pi}{2}$
2. $\pi \int_{0}^{1}\left[\left(x^{2}\right)^{2}-\left(x^{5}\right)^{2}\right] d x=\frac{6 \pi}{55} \quad$ 7. $\pi \int_{0}^{4}(\sqrt{y})^{2} d y=8 \pi$
3. $\pi \int_{0}^{1}\left(y^{3 / 2}\right)^{2} d y=\frac{\pi}{4}$
4. (a) $9 \pi / 2 \quad$ (b) $(36 \pi \sqrt{3}) / 5 \quad$ (c) $(24 \pi \sqrt{3}) / 5$
(d) $(84 \pi \sqrt{3}) / 5$
5. (a) $32 \pi / 3$
$\begin{array}{ll}\text { (b) } 64 \pi / 3 & \text { 15. } 18 \pi\end{array}$
6. $\pi\left(48 \ln 2-\frac{27}{4}\right) \approx 83.318$
7. $124 \pi / 3$
8. $832 \pi / 15$
9. $\pi \ln 5$
10. $2 \pi / 3$
11. $(\pi / 2)\left(1-1 / e^{2}\right) \approx 1.358$
12. $277 \pi / 3$
13. 8π
14. $\pi^{2} / 2 \approx 4.935$
15. $(\pi / 2)\left(e^{2}-1\right) \approx 10.036 \quad$ 37. 1.969
16. 15.4115
17. $\pi / 3$
18. $2 \pi / 15$
19. $\pi / 2$
20. $\pi / 6$
21. (a) The area appears to be close to 1 and therefore the volume (area squared $\times \pi$) is near 3 .
22. A sine curve on $[0, \pi / 2]$ revolved about the x-axis
23. The parabola $y=4 x-x^{2}$ is a horizontal translation of the parabola $y=4-x^{2}$. Therefore, their volumes are equal.
24. (a) This statement is true. Explanations will vary.
(b) This statement is false. Explanations will vary.
25. 18π 59. Proof 61. $\pi r^{2} h\left[1-(h / H)+h^{2} /\left(3 H^{2}\right)\right]$
26.

65. (a) 60π (b) 50π

$$
\pi / 30
$$

67. (a) $V=\pi\left(4 b^{2}-\frac{64}{3} b+\frac{512}{15}\right)$
(b)

68. (a) ii; right circular cylinder of radius r and height h
(b) iv; ellipsoid whose underlying ellipse has the equation $(x / b)^{2}+(y / a)^{2}=1$
(c) iii; sphere of radius r
(d) i; right circular cone of radius r and height h
(e) v ; torus of cross-sectional radius r and other radius R
69.

(a) $\frac{81}{10}$
(b) $\frac{9}{2}$
73. $\frac{16}{3} r^{3}$
75. $V=\frac{4}{3} \pi\left(R^{2}-r^{2}\right)^{3 / 2}$
(b) $\frac{2}{3} r^{3} \tan \theta$; As $\theta \rightarrow 90^{\circ}, V \rightarrow \infty$.

