Section 7.2 (page 465)

1. $\pi \int_{0}^{1} (-x+1)^2 dx = \frac{\pi}{3}$ **3.** $\pi \int_{1}^{4} (\sqrt{x})^2 dx = \frac{15\pi}{2}$ **5.** $\pi \int_{-1}^{1} [(x^2)^2 - (x^5)^2] dx = \frac{6\pi}{55}$ **7.** $\pi \int_{0}^{4} (\sqrt{y})^2 dy = 8\pi$ 9. $\pi \int_{0}^{1} (y^{3/2})^2 dy = \frac{\pi}{4}$ **11.** (a) $9\pi/2$ (b) $(36\pi\sqrt{3})/5$ (c) $(24\pi\sqrt{3})/5$ (d) $(84\pi\sqrt{3})/5$ **13.** (a) $32\pi/3$ (b) $64\pi/3$ **15.** 18π **17.** $\pi(48 \ln 2 - \frac{27}{4}) \approx 83.318$ **19.** $124\pi/3$ **21.** $832\pi/15$ **23.** $\pi \ln 5$ **25.** $2\pi/3$ **27.** $(\pi/2)(1 - 1/e^2) \approx 1.358$ **29.** $277 \pi/3$ **31.** 8π **33.** $\pi^2/2 \approx 4.935$ **35.** $(\pi/2)(e^2 - 1) \approx 10.036$ **37.** 1.969 **39.** 15.4115 **41**. $\pi/3$ **43.** $2\pi/15$ **45.** $\pi/2$ **47.** $\pi/6$ 49. (a) The area appears to be close to 1 and therefore the volume (area squared $\times \pi$) is near 3. **51.** A sine curve on $[0, \pi/2]$ revolved about the x-axis **53.** The parabola $y = 4x - x^2$ is a horizontal translation of the parabola $y = 4 - x^2$. Therefore, their volumes are equal. 55. (a) This statement is true. Explanations will vary. (b) This statement is false. Explanations will vary. **59.** Proof **61.** $\pi r^2 h [1 - (h/H) + h^2/(3H^2)]$ **57**. 18π 63. 0.5 **65.** (a) 60π (b) 50π 2 0 -0.25 $\pi/30$ **67.** (a) $V = \pi \left(4b^2 - \frac{64}{3}b + \frac{512}{15} \right)$ (c) $b = \frac{8}{2} \approx 2.67$ (b) 120 $b \approx 2.67$ **69.** (a) ii; right circular cylinder of radius r and height h

- (b) iv; ellipsoid whose underlying ellipse has the equation $(x/b)^2 + (y/a)^2 = 1$
- (c) iii; sphere of radius r
- (d) i; right circular cone of radius r and height h
- (e) v; torus of cross-sectional radius r and other radius R **71.** (a) $\frac{81}{10}$ (b) $\frac{9}{2}$ **73.** $\frac{16}{3}r^3$ **75.** $V = \frac{4}{3}\pi (R^2 - r^2)^{3/2}$
- **77.** 19.7443 **79.** (a) $\frac{2}{3}r^3$ (b) $\frac{2}{3}r^3 \tan \theta$; As $\theta \to 90^\circ$, $V \to \infty$.